Skip to main content

Posts

Showing posts from August, 2020

Connection Between Fibonacci Numbers and The Golden Ratio

Welcome. In this blog I will tell you relation between the Fibonacci Sequences and the Golden Ratio.Before that below  you can see the statue of Fibonacci, made in 1863 by Giovanni Paganucci, a sculpture in florence, but kept in a ancient cemetery in pisa where the Fibonacci was born. Its is interesting that the likeness of Fibonacci in this statue and his iconic portrait probably looks nothing like Fibonacci, since no true drawings of him exist from 850 years ago . But nevertheless Italy still honors him with this sculpture.  Statue Of Fibonacci Let's Return to Fibonacci Numbers and Fibonacci recursion relation. Then we will show you how they are related to Golden Ratio. So let's do some mathematics. Any way what's the recursion relation do you remember?? The n+1 Fibonacci number is equal to the sum of preceding two that is nth Fibonacci number Plus n-1 Fibonacci number right .                         Fn+1 = Fn + Fn−...

The Golden Ratio Divine Numbers By Luca Pacioli

Welcome. So below you can see very beautiful painting of Friar Luca Pacioli. Luca Pacioli was a religious man but he was also a Mathematician . And because of his standing as mathematician he became the teacher and good friend of Leonardo Da Vinci. Who is the most famous of all the renaissance men . Luca Pacioli  Luca Pacioli is known as the Father of Accounting and Bookkeeping. But our interest in him is because he was the author of a book called the "De Divina Proportione"  or "On the Divine proportion". The Divine proportion is a number . It's a number that we call now the Golden Ratio. Luca Pacioli thought this number was divine, was godly number. We are going to see that this number has a very close relationship with Fibonacci Sequence. What Is GOLDEN RATIO ?? We can understand what the Golden Ratio is by starting with a line segment and dividing the line segment into two segments. Lets Say one of length x and one of length y . Assuming that length x is lar...

Fibonacci Sequence and Climbing Staircase problem

Hello Friends, So here is our next blog on Fibonacci  Sequence. In this blog I will introduce another problem whose solution is the Fibonacci Number. This problem is known as Climbing Staircase problem. The Question is How many ways one can climb staircase with n steps, taking one or two steps at a time ?? Questions Of Climbing Staircase  Eg. Suppose we have 3 steps to climb. So we have a Staircase, we climb it by taking one step , one step , one step or two step , one step or one step, two step. So If we have n-steps in Staircase , then how many different ways can we climb the Staircase? So to answer this question we could make a table, considering small numbers of steps i.e n = 1,2,3,4,5 And we can list the number of ways to climb the Staircase. So Observe the table first column is number of stairs or steps. Second column is the list of ways one can climb by taking one or two steps at a time. Third column a n   the total number of ways to climb Staircase. I hope y...

Fibonacci Sequence and Rabbit Problem

Hello friends hope you all are good , healthy and safe.  In this Blog we will learn about fibonacci Sequence , golden ratio,relation between them , rabbit problem and many more. Fibonacci  Greatest mathematician of the middle ages, Fibonacci. Fibonacci was born in pisa around 850 years ago. He was a famous Italian mathematician. In the year 1202 he finished his book "Liber Abeci". The book of calculations that brought Arabic numerals to Europe, the zero one,two that we use today. Fibonacci also presented a growing rabbit population problem. And after solving this problem he derived the famous sequence of numbers that is named after him, The Fibonacci Sequence . Suppose you put a male-female pair of newly born rabbits in a field . Rabbits take a month to mature before mating. After o ne month , females gives birth to one male-female pair and then mate again. No rabbits die. How many rabbit pairs are there after one year? To solve this, we construct table. At the start of each ...